Polybenzimidazole (PBI) Functionalized Nanographene as Highly Stable Catalyst Support for Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
نویسندگان
چکیده
منابع مشابه
Catalyst supports for polymer electrolyte fuel cells.
A major challenge in obtaining long-term durability in fuel cells is to discover catalyst supports that do not corrode, or corrode much more slowly than the current carbon blacks used in today's polymer electrolyte membrane fuel cells. Such materials must be sufficiently stable at low pH (acidic conditions) and high potential, in contact with the polymer membrane and under exposure to hydrogen ...
متن کاملMaterials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells
The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and t...
متن کاملF FFC-NMR of Catalyst Layer Materials for Polymer Electrolyte Membrane Fuel Cells
1 H and 19 F spin lattice relaxation rates of catalyst layer materials (CLM) of polymer electrolyte membrane fuel cells were measured by the fast field cycling (FFC) method. In contrast to ionomer membranes, 1 H relaxation rates of adsorbed water in both platinumKetjen black (Pt-KB) catalyst powder and CLM were strongly dependent on Larmor frequency approximated by a power law due to the strong...
متن کاملTowards Highly Performing and Stable PtNi Catalysts in Polymer Electrolyte Fuel Cells for Automotive Application
In order to help the introduction on the automotive market of polymer electrolyte fuel cells (PEFCs), it is mandatory to develop highly performing and stable catalysts. The main objective of this work is to investigate PtNi/C catalysts in a PEFC under low relative humidity and pressure conditions, more representative of automotive applications. Carbon supported PtNi nanoparticles were prepared ...
متن کاملHigh-Peak-Power Polymer Electrolyte Membrane Fuel Cells
A polymer electrolyte membrane fuel cell with amorphous hydrated ruthenium dioxide (RuO2 " xH2O) supercapacitative sublayers inserted between the electrocatalyst layers and the Nafion membrane was fabricated to enhance the cell’s pulse power output. RuO2 " xH2O material showed a high capacitance ~ca. 230 F/g! and allowed a much higher pulse power output, which was demonstrated by cyclic voltamm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of The Electrochemical Society
سال: 2016
ISSN: 0013-4651,1945-7111
DOI: 10.1149/2.0921610jes